Đặt A=1+2+4+...+2^n
=>2A=2+2^2+2^3+...+2n+1
=>\(A=2^{n+1}-1\)
Đặt B=1+5+5^2+...+5^n
=>\(5B=5+5^2+5^3+...+5^{n+1}\)
=>\(4B=5^{n+1}-1\)
=>\(B=\dfrac{5^{n+1}-1}{4}\)
\(lim\left(\dfrac{A}{B}\right)=\lim\limits\dfrac{2^{n+1}-1}{\dfrac{5^{n+1}-1}{4}}=\lim\limits\dfrac{2^{n+3}-4}{5^{n+1}-1}\)
\(=\lim\limits\dfrac{2^n\cdot8-4}{5^n\cdot5-1}\)
\(=\lim\limits\dfrac{\left(\dfrac{2}{5}\right)^n\cdot8-\dfrac{4}{5^n}}{5-\dfrac{1}{5^n}}=\dfrac{0}{5}=0\)