Chương I - Căn bậc hai. Căn bậc ba

NT

Tinh gt cua da thuc :

\(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\)

voi \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

giai chi tiet nhat co the nha mn ^^!

MD
8 tháng 7 2017 lúc 10:26

Ta có: \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}}+\sqrt{5}\right)}\right)\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\sqrt{\dfrac{81}{16}-5}}\right)\)

<=> \(x=9-\left(\dfrac{\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}}{\dfrac{1}{4}}\right)\)

Đặt \(D=\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\)

<=> \(D^2=\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}-\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)^2\)

\(=\dfrac{9}{4}+\sqrt{5}+\dfrac{9}{4}-\sqrt{5}-2\sqrt{\left(\sqrt{\dfrac{9}{4}+\sqrt{5}}\right)\left(\sqrt{\dfrac{9}{4}-\sqrt{5}}\right)}\)

<=> \(D^2=\dfrac{9}{2}-2.\sqrt{\dfrac{1}{16}}=\dfrac{9}{2}-2.\dfrac{1}{4}=4\)

<=> \(D=\sqrt{4}=2\)

=> \(x=9-\dfrac{2}{\dfrac{1}{4}}=1\)

\(f\left(x\right)=\left(x^4-3x+1\right)^{2016}\)

=> \(f\left(1\right)=\left(1-3+1\right)^{2016}=1\)

Hay \(f\left(x\right)=1\) khi \(x=9-\dfrac{1}{\sqrt{\dfrac{9}{4}-\sqrt{5}}}+\dfrac{1}{\sqrt{\dfrac{9}{4}+\sqrt{5}}}\)

P/s: Đã lm chậm nhất có thể!

Bình luận (1)

Các câu hỏi tương tự
QE
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
H24
Xem chi tiết
QT
Xem chi tiết
QE
Xem chi tiết
LG
Xem chi tiết
TM
Xem chi tiết
NT
Xem chi tiết