Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Chương I - Căn bậc hai. Căn bậc ba

VG

Tính giá trị của các biểu thức:

A = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)

B = 35 + 335 + 3335 + ... + 3333...(99 số 3)35

NL
30 tháng 7 2017 lúc 7:32

A = \(\dfrac{1}{\sqrt{3}+\sqrt{5}}+\dfrac{1}{\sqrt{5}+\sqrt{7}}+\dfrac{1}{\sqrt{7}+\sqrt{9}}+...+\dfrac{1}{\sqrt{97}+\sqrt{99}}\)

= \(\dfrac{1}{2}\left(\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+\sqrt{9}-\sqrt{7}+...+\sqrt{99}-\sqrt{97}\right)\)

= \(\dfrac{1}{2}\left(\sqrt{99}-\sqrt{3}\right)\)

B = 35 + 335 + 3335 + ... + 3333...(99 số 3)35

= 33 + 2 + 333 + 2 + 3333 + 2 + ... + 333...33 + 2

= 2 . 99 + (33 + 333 + 3333 + ... + 333...3)

= 198 + \(\dfrac{1}{3}\)(99 + 999 + 9999 + ... + 999...99)

= 198 + \(\dfrac{1}{3}\)(102 - 1 + 103 - 1 + 104 - 1 + ... + 10100 - 1)

= \(\left(\dfrac{10^{101}-10^2}{27}\right)+165\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
H24
Xem chi tiết
NH
Xem chi tiết
TN
Xem chi tiết
NT
Xem chi tiết
PL
Xem chi tiết
LG
Xem chi tiết
HH
Xem chi tiết
PA
Xem chi tiết