Nguyễn NamAkai Harumalê thị hương giangNguyễn Huy ThắngF.CAmanogawa KiraraPhạm Tuấn Đạt Kien Nguyen
huỳnh thị ngọc ngânRibi Nkok NgokUnruly KidPhạm Hoàng GiangHung nguyen
Nguyễn NamAkai Harumalê thị hương giangNguyễn Huy ThắngF.CAmanogawa KiraraPhạm Tuấn Đạt Kien Nguyen
huỳnh thị ngọc ngânRibi Nkok NgokUnruly KidPhạm Hoàng GiangHung nguyen
giải phương trình: \(\left(2x^2+x-2013\right)+4.\left(x^2-5x-2012\right)=4\left(2x^2+x-2013\right).\left(x^2-5x-2012\right)\)
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tính giá trị nguyên của x để A có giá trị nguyên
Cho các số thực dương a,b thỏa mãn: \(a^{2012}+b^{2012}=a^{2013}+b^{2013}=a^{2014}+b^{2014}\)
Hãy tính giá trị của biểu thức: \(P=\left(a+b-1\right)^{2013}+b^{2014}\)
Tìm giá trị lớn nhất của biểu thức \(P=\dfrac{2012}{x^2+y^2-20\left(x+y\right)+2213}\)
Cho các số x,y thỏa mãn đẳng thức:
\(^{2x^2}\)+\(^{2y^2}\)+3xy-x+y+1=0
Tính giá trị của biểu thức:
B=\(^{\left(x+y\right)^{2018}}\)+\(\left(x-2\right)^{2018}\)+\(\left(y-1\right)^{2018}\)
Cho biểu thức: \(A=\dfrac{x^3-3}{\left(x+1\right).\left(x-3\right)}-\dfrac{2.\left(x-3\right)}{x+1}-\dfrac{x+3}{x-3}\). Tìm giá trị nguyên của x để A có giá trị nguyên
cho các số x,y thỏa mãn đẳng thức \(3x^2+3y^2+4xy+2x-2y+2=0\\ \)
tính giá trị biểu thức M=\(\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\)
Cho hai phương trình: \(\dfrac{x-2013}{2011}+\dfrac{x-2011}{2009}=\dfrac{x-2009}{2007}+\dfrac{x-2007}{2005}\left(1\right)\) và \(\dfrac{x^2-\left(2-m\right)x-2m}{x-1}=0\left(2\right)\) ( Với m là tham số). Với giá trị nào của m thì 2 phương trình đã cho tương đương
1) Tìm nghiệm nguyên của phương trình : xy+y = x3 +x2 +7
2) Giải phương trình : \(\left(1+\dfrac{1}{1.3}\right)\left(1+\dfrac{1}{2.4}\right)\left(1+\dfrac{1}{3.5}\right)...\left(1+\dfrac{1}{x\left(x+2\right)}\right)=\dfrac{2.2011}{2012}\)