Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho x,y,z # 0 và\(\dfrac{x-y-z}{x}=\dfrac{y-x-z}{y}=\dfrac{-x-y+z}{z}\)
Tính A =\(\left(1+\dfrac{y}{x}\right)\left(1+\dfrac{z}{y}\right)\left(1+\dfrac{x}{z}\right)\)
Cho: \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\) và x+y+z=xyz (x, y, z khác 0). CM: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=2\)
Cho \(\dfrac{x^2}{z+y}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\)
Cmr: \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=1\)
Cho x, y, z>0 và \(x+y+z\le1\). CM: \(x+y+z+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge10\)
cho x,y,z thỏa mãn \(\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=1\)
Cm: \(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}=0\)
cho x,y,x>0
cm: \(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}< =\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\)
CMR với x, y, z khác 0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\) thì hai trong ba số x, y, z đối nhau
Áp dụng chứng minh : \(\dfrac{1}{x^{2018}}+\dfrac{1}{y^{2018}}+\dfrac{1}{z^{2018}}=\dfrac{1}{x^{2018}+y^{2018}+z^{2018}}\)
Cho x,y,z đôi một khác nhau và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\). Tính giá trị của biểu thức: \(A=\dfrac{yz}{x^2+2yz}+\dfrac{xz}{y^2+2xz}+\dfrac{xy}{z^2+2xy}\)
Cho x,y,z là các số thực khác 0 và thỏa mãn
A=\(\left\{{}\begin{matrix}x\left(\dfrac{1}{y}+\dfrac{1}{z}\right)+y\left(\dfrac{1}{z}+\dfrac{1}{x}\right)z\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=-2\\x^3+y^3+z^3=1\end{matrix}\right.\)
Tính giá trị của A=\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)