Kẻ đường cao AH và đường cao BK . \(\Rightarrow AB=HK=1cm\)
Nên ta có : \(DH+CK=4\) (1)
Theo tỉ số lượng giác cho tam giác ADH và BCK ta lại có :
\(\left\{{}\begin{matrix}AH=\tan60.DH\\BK=\tan30.CK\end{matrix}\right.\Rightarrow\tan60.DH=\tan30.CK\) (2)
Từ (1) và (2) ta có hệ phương trình :
\(\left\{{}\begin{matrix}DH+CK=4\\\sqrt{3}DH-\dfrac{\sqrt{3}}{3}CK=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}DH=1\\CK=3\end{matrix}\right.\)
\(\Rightarrow AH=\tan60.DH=\sqrt{3}.1=\sqrt{3}cm\)
\(\Rightarrow S_{ABCD}=\dfrac{1}{2}.AH.\left(AB+CD\right)=\dfrac{1}{2}.\sqrt{3}.\left(1+5\right)=3\sqrt{3}cm^2\)