Violympic toán 8

DC

Tính \(\dfrac{1^2}{1.3}+\dfrac{2^2}{3.5}+\dfrac{3^3}{5.7}+...+\dfrac{1006^2}{2011.2013}\)

PT
7 tháng 9 2017 lúc 21:05

Đặt \(A=\dfrac{1^2}{1.3}+\dfrac{2^2}{3.5}+\dfrac{3^3}{5.7}+...+\dfrac{1006^2}{2011.2013}\)

\(\Rightarrow4A=\dfrac{4.1^2}{1.3}+\dfrac{4.2^2}{3.5}+\dfrac{4.3^3}{5.7}+...+\dfrac{4.1006^2}{2011.2013}\)

\(\Rightarrow4A=1006+\dfrac{1}{2}.\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{2011}-\dfrac{1}{2013}\right]\)

\(\Rightarrow A=\dfrac{1006+\dfrac{1}{2}.\left(1-\dfrac{1}{2013}\right)}{4}\)

\(\Rightarrow A=251,6249\)

Bình luận (1)

Các câu hỏi tương tự
HS
Xem chi tiết
LN
Xem chi tiết
JL
Xem chi tiết
TB
Xem chi tiết
FA
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
VC
Xem chi tiết
LC
Xem chi tiết