Bài 1. Định lí Thalès trong tam giác

QL

Tính các độ dài \(x,y\) trong Hình 23.

HM
13 tháng 9 2023 lúc 21:42

a) Ta có: \(AC = AK + KC = 3 + 1,5 = 4,5\)

Xét tam giác \(ABC\) có \(HK//BC\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{HK}}{{BC}} = \frac{{AK}}{{AC}} \Rightarrow \frac{x}{6} = \frac{3}{{4,5}}\). Do đó, \(x = \frac{{3.6}}{{4,5}} = 4\).

Vậy \(x = 4\).

b) Ta có: \(MH = MQ + QH = x + 1,8\)

Xét tam giác \(MNH\) có \(PQ//NH\) nên theo hệ quả của định lí Thales ta có:

\(\frac{{PQ}}{{NH}} = \frac{{MQ}}{{MH}} \Rightarrow \frac{{3,8}}{{6,4}} = \frac{x}{{x + 1,8}}\). Do đó, \(6,4x = 3,8.\left( {x + 1,8} \right)\)

\( \Leftrightarrow 6,4x = 3,8x + 6,84\)

\( \Leftrightarrow 6,4x - 3,8x = 6,84\)

\( \Leftrightarrow 2,6x = 6,84\)

\( \Leftrightarrow x = 6,84:2,6\)

\( \Leftrightarrow x = \frac{{171}}{{65}}\).

Vậy \(x = \frac{{171}}{{65}}\).

c) Vì \(\left\{ \begin{array}{l}DE \bot AD\\AB \bot AD\end{array} \right. \Rightarrow DE//AB\) (quan hệ từ vuông góc đến song song).

Xét \(\Delta CDE\) vuông tại \(D\) ta có:

\(E{D^2} + D{C^2} = E{C^2}\) (Định lí Py- ta – go)

\( \Leftrightarrow {8^2} + {6^2} = E{C^2}\)

\( \Leftrightarrow E{C^2} = 100\)

\( \Leftrightarrow EC = 10\)

Xét tam giác \(ABC\) có \(DE//AB\) nên theo hệ quả của định lí Thales ta có:

\(\left\{ \begin{array}{l}\frac{{AC}}{{DC}} = \frac{{AB}}{{ED}} \Rightarrow \frac{5}{6} = \frac{x}{8}\\\frac{{AC}}{{DC}} = \frac{{BC}}{{EC}} \Rightarrow \frac{5}{6} = \frac{y}{{10}}\end{array} \right.\). Do đó, \(\left\{ \begin{array}{l}x = \frac{{5.8}}{6} = \frac{{20}}{3}\\y = \frac{{5.10}}{6} = \frac{{25}}{3}\end{array} \right.\).

Vậy \(x = \frac{{20}}{3};y = \frac{{25}}{3}\).

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết