Violympic toán 8

LT

Tính biểu thức sau một cách Hợp lý

\(\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\left(3^{32}+1\right)\)

AH
6 tháng 10 2019 lúc 12:35

Lời giải:

Áp dụng HĐT đáng nhớ \((a-b)(a+b)=a^2-b^2\). Ta có:

\(A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(2A=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^8-1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^{16}-1)(3^{16}+1)(3^{32}+1)\)

\(=(3^{32}-1)(3^{32}+1)=3^{64}-1\)

\(\Rightarrow A=\frac{3^{64}-1}{2}\)

Bình luận (0)
AH
3 tháng 10 2019 lúc 14:53

Lời giải:

Áp dụng HĐT đáng nhớ \((a-b)(a+b)=a^2-b^2\). Ta có:

\(A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(2A=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^8-1)(3^8+1)(3^{16}+1)(3^{32}+1)\)

\(=(3^{16}-1)(3^{16}+1)(3^{32}+1)\)

\(=(3^{32}-1)(3^{32}+1)=3^{64}-1\)

\(\Rightarrow A=\frac{3^{64}-1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
PT
Xem chi tiết
NL
Xem chi tiết
ML
Xem chi tiết
DP
Xem chi tiết
NS
Xem chi tiết
DD
Xem chi tiết
DD
Xem chi tiết
BB
Xem chi tiết
PT
Xem chi tiết