Lời giải:
Áp dụng HĐT đáng nhớ \((a-b)(a+b)=a^2-b^2\). Ta có:
\(A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(2A=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^8-1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^{16}-1)(3^{16}+1)(3^{32}+1)\)
\(=(3^{32}-1)(3^{32}+1)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)
Lời giải:
Áp dụng HĐT đáng nhớ \((a-b)(a+b)=a^2-b^2\). Ta có:
\(A=(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(2A=(3-1)(3+1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^2-1)(3^2+1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^4-1)(3^4+1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^8-1)(3^8+1)(3^{16}+1)(3^{32}+1)\)
\(=(3^{16}-1)(3^{16}+1)(3^{32}+1)\)
\(=(3^{32}-1)(3^{32}+1)=3^{64}-1\)
\(\Rightarrow A=\frac{3^{64}-1}{2}\)