Ta có: \(A=\frac{108}{27}\cdot\frac{146}{29}-\frac{54}{27}\cdot\frac{202}{29}-\frac{16}{29}\)
\(=4\cdot\frac{146}{29}-2\cdot\frac{202}{29}-\frac{16}{29}\)
\(=\frac{584}{29}-\frac{404}{29}-\frac{16}{29}\)
\(=\frac{164}{29}\)
Ta có: \(A=\frac{108}{27}\cdot\frac{146}{29}-\frac{54}{27}\cdot\frac{202}{29}-\frac{16}{29}\)
\(=4\cdot\frac{146}{29}-2\cdot\frac{202}{29}-\frac{16}{29}\)
\(=\frac{584}{29}-\frac{404}{29}-\frac{16}{29}\)
\(=\frac{164}{29}\)
Bài 3: Giải phương trình sau:
i) \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
Help me!!!!
1.\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
2.\(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
giả phương trình:
\(\frac{x-91}{37}+\frac{x-86}{42}+\frac{x-78}{50}+\frac{x-49}{79}=4\)
\(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}-8=0\)
Bài 7: Giải các phương trình sau :
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
b) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
d) \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
Tìm x:
\(\dfrac{x-5}{100}+\dfrac{x-4}{100}+\dfrac{x-3}{100}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
\(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)
giải các pt sau:
a. x4 - 3x3 + 3x2 -x = 80
b. (x2 + x + 1) (x2 + x + 2) = 12
c. \(\frac{2+29}{31}-\frac{x+27}{33}=\frac{x+17}{43}-\frac{x-15}{45}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \(A=\frac{27-12x}{x^2+9}\)
Rút gọn biểu thức :A=(2x+3)2+(3x-2)2+2(2x+3)(3x-2)
b) Tìm số dư trong phép chia sau (x+9)(x+2)(x+8)(x+1)+1964 chia cho đa thức (x2+10x+29)
f(x)= x29+x28+x27+...+x2+x+1
g(x)=x9+x2+...+x+1
CMR f(x) chia hết cho g(x)