Chương 4: GIỚI HẠN

H24

tính A=\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{\sqrt{1-x}-x-1}\)

HP
18 tháng 3 2022 lúc 15:54

\(f\left(x\right)=\dfrac{\sqrt{1+2x}-\sqrt[3]{1+3x}}{\sqrt{1-x}-x-1}\)

\(=\dfrac{\sqrt{1+2x}-\left(x+1\right)}{\sqrt{1-x}-x-1}+\dfrac{\left(x+1\right)-\sqrt[3]{1+3x}}{\sqrt{1-x}-x-1}\)

\(=\dfrac{\left(1+2x-x^2-2x-1\right)\left(\sqrt{1-x}+x+1\right)}{\left(1-x-x^2-2x-1\right)\left(\sqrt{1+2x}+x+1\right)}+\dfrac{\left(x^3+3x^2+3x+1-1-3x\right)\left(\sqrt{1-x}+x+1\right)}{\left(1-x-x^2-2x-1\right)\left[\left(x+1\right)^2+\sqrt[3]{\left(1+3x\right)^2}+\left(x+1\right)\sqrt[3]{1+3x}\right]}\)

\(=\dfrac{x^2\left(\sqrt{1-x}+x+1\right)}{\left(x^2+3x\right)\left(\sqrt{1+2x}+x+1\right)}-\dfrac{\left(x^3+3x^2\right)\left(\sqrt{1-x}+x+1\right)}{\left(x^2+3x\right)\left[\left(x+1\right)^2+\sqrt[3]{\left(1+3x\right)^2}+\left(x+1\right)\sqrt[3]{1+3x}\right]}\)

\(=\dfrac{x\left(\sqrt{1-x}+x+1\right)}{\left(x+3\right)\left(\sqrt{1+2x}+x+1\right)}-\dfrac{\left(x+3\right)\left(\sqrt{1-x}+x+1\right)}{\left(x+1\right)^2+\sqrt[3]{\left(1+3x\right)^2}+\left(x+1\right)\sqrt[3]{1+3x}}\)

Khi đó:

\(A=\lim\limits_{x\rightarrow0}f\left(x\right)=-\dfrac{3.2}{1+1+1}=-2\)

Bình luận (0)

Các câu hỏi tương tự
BT
Xem chi tiết
TC
Xem chi tiết
TL
Xem chi tiết
QA
Xem chi tiết
QA
Xem chi tiết
TM
Xem chi tiết
AN
Xem chi tiết
KR
Xem chi tiết
TL
Xem chi tiết