Ôn tập toán 7

DD

Tính : A=\(\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}{\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}}\)

NT
22 tháng 4 2017 lúc 20:06

Ta có:

\(\dfrac{2016}{1}+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)

\(=2016+\dfrac{2015}{2}+\dfrac{2014}{3}+...+\dfrac{1}{2016}\)

\(=1+\left(1+\dfrac{2015}{2}\right)+\left(1+\dfrac{2014}{3}\right)+...+\left(1+\dfrac{1}{2016}\right)\)

\(=\dfrac{2017}{2}+\dfrac{2017}{3}+\dfrac{2017}{4}+...+\dfrac{2017}{2016}+\dfrac{2017}{2017}\)

\(=2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}+\dfrac{1}{2017}\right)\)

Do đó: \(A=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}}{2017\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2017}\right)}=\dfrac{1}{2017}\)

Vậy...

Bình luận (0)

Các câu hỏi tương tự
HC
Xem chi tiết
TY
Xem chi tiết
VK
Xem chi tiết
VK
Xem chi tiết
TM
Xem chi tiết
OO
Xem chi tiết
NC
Xem chi tiết
TQ
Xem chi tiết
H24
Xem chi tiết