Tính các nguyên hàm sau :
a) \(\int\left(2x-3\right)\sqrt{x-3}dx\), đặt \(u=\sqrt{x-3}\)
b) \(\int\dfrac{x}{\left(1+x^2\right)^{\dfrac{3}{2}}}dx\) , đặt \(u=\sqrt{x^2+1}\)
c) \(\int\dfrac{e^x}{e^x+e^{-x}}dx\), đặt \(u=e^{2x}+1\)
d) \(\int\dfrac{1}{\sin x-\sin a}dx\)
e) \(\int\sqrt{x}\sin\sqrt{x}dx,\) đặt \(t=\sqrt{x}\)
g) \(\int x\ln\dfrac{x}{1+x}dx\)
Tính :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\cos2x.\sin^2dx\)
b) \(\int\limits^1_{-1}\left|2^x-2^{-x}\right|dx\)
c) \(\int\limits^2_1\dfrac{\left(x+1\right)\left(x+2\right)\left(x+3\right)}{x^2}dx\)
d) \(\int\limits^2_0\dfrac{1}{x^2-2x-3}dx\)
e) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\sin x+\cos x\right)^2dx\)
g) \(\int\limits^{\pi}_0\left(x+\sin x\right)^2dx\)
Tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{4}}_0\cos2x.\cos^2xdx\)
b) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{e^x}{e^{2x}-1}dx\)
c) \(\int\limits^1_0\dfrac{x+2}{x^2+2x+1}\ln\left(x+1\right)dx\)
d) \(\int\limits^{\dfrac{\pi}{4}}_0\dfrac{x\sin x+\left(x+1\right)\cos x}{x\sin x+\cos x}dx\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y-1\right)^2\sqrt{y}dy\), đặt \(t=\sqrt{y}\)
b) \(\int\limits^2_1\left(x^2+1\right)\sqrt[3]{\left(z-1\right)^2}dz\), đặt \(u=\sqrt[3]{z-1}\)
c) \(\int\limits^e_1\dfrac{\sqrt{4+5\ln x}}{x}dx\)
d) \(\int\limits^{\dfrac{\pi}{2}}_0\left(\cos^5\varphi-\sin^5\varphi\right)d\varphi\)
e) \(\int\limits^{\pi}_0\cos^3\alpha\cos3\alpha d\alpha\)
Hãy chỉ ra các kết quả đúng trong các kết quả sau :
a) \(\int\limits^1_0x^n\left(1-x\right)^mdx=\int\limits^1_0x^m\left(1-x\right)^ndx;m,n\in\mathbb{N}^{\circledast}\)
b) \(\int\limits^1_{-1}\dfrac{t^2}{e^t+1}dx=\int\limits^1_0t^2dt\)
c) \(\int\limits^1_0\sin^3x\cos xdx=\int\limits^1_0t^3dt\)
Cho hàm số y = f(x) liên tục trên \(\left[0;2\right]\), thỏa mãn các điều kiện f(2) = 1 và \(\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left[f'\left(x\right)\right]^2dx=\dfrac{2}{3}\) Giá trị của f(1) bằng
Tính :
a) \(\int\limits^3_0\dfrac{x}{\sqrt{1+x}}dx\)
b) \(\int\limits^{64}_1\dfrac{1+\sqrt{x}}{\sqrt[3]{x}}dx\)
c) \(\int\limits^2_0x^2e^{3x}dx\)
d) \(\int\limits^{\pi}_0\sqrt{1+\sin2x}dx\)
Cho hàm số f(x) thỏa mãn: xf'(x).lnx + f(x) = 2x2, ∀x ∈ (1;+∞) và f(e) = e2. Tính tích phân I=\(\int\limits^{e^2}_e\dfrac{x}{f\left(x\right)}dx\)
Hàm y=f(x) liên tục có f'(x) liên tục trên R thỏa: f(4)=8. Tính \(\int\limits^4_0x.f'\left(2x\right)dx\)
Biết \(\int\limits^4_0f\left(x\right)dx=6\)