Chương I : Số hữu tỉ. Số thực

NL

tìm x,y,z

\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)và xyz=108

thanks các bn trc nha

SC
21 tháng 11 2017 lúc 22:47

Đặt \(\dfrac{x}{2}=\dfrac{2y}{3}=\dfrac{3z}{4}=k\). Khi đó ta có:

\(x=2k;2y=3k\Rightarrow y=\dfrac{3k}{2};3z=4k\Rightarrow z=\dfrac{4k}{3}\)

\(\Rightarrow xyz=108\Leftrightarrow2k\cdot\dfrac{3k}{2}\cdot\dfrac{4k}{3}=108\)

\(\Rightarrow\dfrac{24k^3}{6}=108\Rightarrow k^3=27\Rightarrow k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2\cdot3=6\\y=\dfrac{3\cdot3}{2}=\dfrac{9}{2}\\z=\dfrac{4\cdot3}{3}=4\end{matrix}\right.\)

Vậy....

Bình luận (0)
NN
21 tháng 11 2017 lúc 22:57

Đặt \(\dfrac{x}{2}=\dfrac{2y}{3}=\dfrac{3z}{4}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\2y=3k\Rightarrow y=\dfrac{3k}{2}\\3z=4k\Rightarrow z=\dfrac{4k}{3}\end{matrix}\right.\)

\(xyz=108\)

\(\Rightarrow2k.\dfrac{3k}{2}.\dfrac{4k}{3}=108\)

\(\Rightarrow2k.\dfrac{3}{2}k.\dfrac{4}{3}k=108\)

\(\Rightarrow k^3.4=108\)

\(\Rightarrow k^3=\dfrac{108}{4}=27\)

\(\Rightarrow k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=2.3=6\\y=\dfrac{3.3}{2}=4,5\\z=\dfrac{4.3}{3}=4\end{matrix}\right.\)

Vậy \(x=6;y=4,5;z=4\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
TT
Xem chi tiết
TT
Xem chi tiết
LS
Xem chi tiết
DS
Xem chi tiết
PD
Xem chi tiết
MV
Xem chi tiết
MV
Xem chi tiết
DS
Xem chi tiết