Violympic toán 9

DC

tìm x,y,z để C=5x2+y2+z2-4x-2xy-z-1 đạt GTNN

AL
12 tháng 2 2019 lúc 14:37

Ta có \(C=5x^2+y^2+z^2-4x-2xy-z-1\)

\(=x^2-2xy+y^2+4x^2-4x+1+z^2-z+\dfrac{1}{4}-1-\dfrac{1}{4}-1\)

\(=\left(x-y\right)^2+\left(2x-1\right)^2+\left(z-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\)

Ta có \(\left(x-y\right)^2\ge0;\left(2x-1\right)^2\ge0;\left(z-\dfrac{1}{2}\right)^2\ge0\)

=> \(C\ge-\dfrac{9}{4}\)

=> C đạt giá trị nhỏ nhất là \(-\dfrac{9}{4}\) khi

\(\left\{{}\begin{matrix}x-y=0\\2x-1=0\\z-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=y=\dfrac{1}{2}\\x=\dfrac{1}{2}\\z=\dfrac{1}{2}\end{matrix}\right.\)

=> \(x=y=z=\dfrac{1}{2}\)

Vậy MinC = \(-\dfrac{9}{4}\)khi x=y=z = \(\dfrac{1}{2}\)

Bình luận (0)

Các câu hỏi tương tự
H24
Xem chi tiết
HN
Xem chi tiết
DH
Xem chi tiết
BA
Xem chi tiết
ND
Xem chi tiết
AD
Xem chi tiết
NT
Xem chi tiết
H24
Xem chi tiết
LQ
Xem chi tiết