Ôn tập toán 7

CT

Tìm x,y,z biết:\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2*x+3*y-z=50

SG
27 tháng 9 2016 lúc 19:18

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x+3y-z-2-6+3}{9}\)

                                                                    \(=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5,4=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)

Vậy x = 11; y = 17; z = 23

Bình luận (0)
NT
27 tháng 9 2016 lúc 19:40

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-\left(2+6-3\right)}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

+) \(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

+) \(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

+) \(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(11,17,23\right)\)

Bình luận (0)

Các câu hỏi tương tự
YO
Xem chi tiết
NN
Xem chi tiết
GG
Xem chi tiết
TK
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TL
Xem chi tiết