Chương I : Số hữu tỉ. Số thực

HM

Tìm x,y,z biết

\(\dfrac{y+z+1}{x}=\dfrac{z+x+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)

AH
25 tháng 4 2018 lúc 12:57

Lời giải:
ĐK: \(x,y,z,x+y+z\neq 0\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y+z+1+z+x+2+x+y-3}{x+y+z}=\frac{2(x+y+z)}{x+y+z}\)

\(\Rightarrow \frac{1}{x+y+z}=\frac{2(x+y+z)}{x+y+z}=2\)

\(\Rightarrow x+y+z=\frac{1}{2}\)

Do đó thay vào điều kiện đề bài ban đầu:

\(\frac{y+z+1}{x}=\frac{z+x+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow \frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)

\(\Leftrightarrow \frac{3}{2x}-1=\frac{5}{2y}-1=\frac{-5}{2z}-1=2\)

\(\Leftrightarrow \frac{3}{2x}=\frac{5}{2y}=\frac{-5}{2z}=3\)

\(\Rightarrow x=\frac{1}{2}; y=\frac{5}{6}; z=\frac{-5}{6}\)

Thử lại thấy đúng.

Vậy.................

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
KR
Xem chi tiết
DH
Xem chi tiết
PG
Xem chi tiết
NN
Xem chi tiết
DH
Xem chi tiết
H24
Xem chi tiết