Violympic toán 9

MT

Tìm x,y thỏa mãn: \(\left\{{}\begin{matrix}\left(x+\sqrt{2015+x^2}\right)\left(y+\sqrt{2015+y^2}\right)=2015\\3x^2+8y^2-12xy=23\end{matrix}\right.\)

AH
26 tháng 7 2018 lúc 23:55

Lời giải:

Liên hợp.

PT(1)\(\Rightarrow (x-\sqrt{2015+x^2})(x+\sqrt{2015+x^2})(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Leftrightarrow [(x^2)-(2015+x^2)](y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Rightarrow -2015(y+\sqrt{2015+y^2})=2015(x-\sqrt{2015+x^2})\)

\(\Rightarrow y+\sqrt{2015+y^2}=\sqrt{2015+x^2}-x(*)\)

Tương tự, nhân cả 2 vế của PT(1) với \(y-\sqrt{2015+y^2}\) ta cũng thu được:

\(x+\sqrt{2015+x^2}=\sqrt{2015+y^2}-y(**)\)

Từ \((*);(**)\Rightarrow x+y=0\Rightarrow y=-x\)

Thay vào PT (2)

\(3x^2+8x^2+12x^2=23\Rightarrow 23x^2=23\Rightarrow x=\pm 1\)

\(\Rightarrow y=\mp 1\)

Vậy..........

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NH
Xem chi tiết
KZ
Xem chi tiết
KN
Xem chi tiết
ML
Xem chi tiết
PT
Xem chi tiết
WY
Xem chi tiết
AJ
Xem chi tiết
NT
Xem chi tiết