Ta có: \(2x^3+x=51x\)
\(\Leftrightarrow2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
`2x^3+x=51x`
`->2x^2+x-51x=0`
`->2x^2-50x=0`
`->2x(x-25)=0`
`->`\(\left[\begin{array}{} 2x=0\\ x-25=0 \end{array} \right.\)
`->`\(\left[\begin{array}{} x=0\\ x=25 \end{array} \right.\)
Vậy `S={0;25}`
`2x^3+x=51x`
`=>2x^3+x-51x=0`
`<=>2x^3-50x=0`
`<=>2x(x^2-25)=0`
`<=>2x(x-5)(x+5)=0`
`<=>` $\left[\begin{matrix}2x=0\\x-5=0\\x+5=0\end{matrix}\right.$
`<=>` $\left[\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.$