\(\Leftrightarrow x+1+5x\left(x+2\right)=4\left(x-2\right)+3x^2-12\)
\(\Leftrightarrow x+1+5x^2+10x-4x+8-3x^2+12=0\)
\(\Leftrightarrow2x^2+7x+21=0\)
\(\text{Δ}=7^2-4\cdot2\cdot21=49-168< 0\)
Vì Δ<0 nên phương trình vô nghiệm
\(\Leftrightarrow x+1+5x\left(x+2\right)=4\left(x-2\right)+3x^2-12\)
\(\Leftrightarrow x+1+5x^2+10x-4x+8-3x^2+12=0\)
\(\Leftrightarrow2x^2+7x+21=0\)
\(\text{Δ}=7^2-4\cdot2\cdot21=49-168< 0\)
Vì Δ<0 nên phương trình vô nghiệm
Tìm x: \(x-\frac{\frac{x}{2}-\frac{x}{3}}{4}-\frac{x}{6}=\frac{2\left(1+x\right)}{3}-\frac{\frac{x}{3}+\frac{1-x^7}{4}}{2}\)
Tìm x: \(\frac{3\frac{1}{2}x-4}{6}+\frac{2+\frac{1}{4}x}{3}=1\frac{1}{4}x\left(x-1\right)-\frac{7-\frac{3}{4}x}{3}\)
Tìm x: \(x-\frac{\frac{x}{2}-\frac{3+x}{4}}{2}=\frac{2x-\frac{10-7x}{3}}{2}-\left(x+1\right)\)
Tìm x: \(\frac{\left(x-2\right)^2}{2}-4\frac{1}{3}\left(x+3\right)^2=\frac{1}{4}\left(x-1\right)\left(x-2\right)-2\left(3x-1\right)\left(2+3x\right)\)
Tìm x: \(\frac{\left(2-3x\right)^2}{3}-\frac{\left(1+2x\right)^2}{2}=\frac{3}{4}-2\left(x-1\right)\left(x+2\right)+x\left(1+x\right)\)
Tìm x: \(\left|x-5\right|+\frac{\left(x-1\right)\left(x-3\right)}{2}=\frac{\left(x+1\right)^2}{3}-\frac{\left(1-2x\right)^2}{4}\)
Tìm x: \(3\left(x-2\right)^2-1\frac{1}{4}\left(1+3x\right)^2=1\frac{1}{3}\left(x-1\right)\left(3-x\right)-1\frac{1}{6}x\left(x-3\right)\)
Tìm x: \(3\left(x-2\right)^2-1\frac{1}{4}\left(1+3x\right)^2=1\frac{1}{3}\left(x-1\right)\left(3+x\right)-1\frac{1}{6}x\left(x-3\right)\)
Tìm x : \(\frac{\left(2x+1\right)^2}{2}-\left|x+1\right|=\frac{\left(x-2\right)^2}{3}-3\left(x+4\right)\)