\(a\))\(A=\frac{2\left(x+\sqrt{x}+1\right)}{x+1}\)(đk:\(x\ge0\))
\(A=\frac{2\left(x+1\right)+2\sqrt{x}}{x+1}\)
\(A=2+\frac{2\sqrt{x}}{x+1}\)
Ta có:\(x+1-2\sqrt{x}=\left(\sqrt{x}-1\right)^2\ge0\)
\(\Rightarrow2\sqrt{x}\le x+1\)
\(\Rightarrow0< \frac{2\sqrt{x}}{x+1}\le1\)
Để \(A\in Z\Rightarrow\frac{2\sqrt{x}}{x+1}\in Z\Rightarrow\frac{2\sqrt{x}}{x+1}=0;1\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
c)\(C=\frac{8\sqrt{x}+3}{4x^2+1}\)(đk:x\(\ge0\))
Ta có:\(4x^2+1=4x^2+4+4+4\ge2\sqrt[4]{4x^2\cdot4^3}=8\sqrt{x}\)
\(\Rightarrow C\le\frac{8\sqrt{x}+3}{8\sqrt{x}-15}\)(đến đây chắc dễ rồi)