Ôn tập cuối năm phần số học

QL

Tìm x, biết: \(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)

NT
8 tháng 1 2018 lúc 12:19

Đặt \(\left\{{}\begin{matrix}x-2010=a\\2009-x=b\end{matrix}\right.\)

Theo đề bài ta có:

\(\dfrac{\left(2009-x\right)^2+\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}{\left(2009-x\right)^2-\left(2009-x\right)\left(x-2010\right)+\left(x-2010\right)^2}=\dfrac{19}{49}\)

\(\Leftrightarrow\dfrac{b^2+ab+a^2}{b^2-ab+a^2}=\dfrac{19}{49}\)

\(\Leftrightarrow19\left(b^2-ab+a^2\right)=49\left(b^2+ab+a^2\right)\)
\(\Leftrightarrow19b^2-19ab+19a^2-49b^2-49ab-49a^2=0\)

\(\Leftrightarrow-30a^2-68ab-30b^2=0\)

\(\Leftrightarrow-2\left(15a^2+34ab+15b^2\right)=0\)

\(\Leftrightarrow15a^2+34ab+15b^2=0\)

\(\Leftrightarrow15a^2+25ab+9ab+15b^2=0\)

\(\Leftrightarrow5a\left(3a+5b\right)+3b\left(3a+5b\right)=0\)

\(\Leftrightarrow\left(3a+5b\right)\left(5a+3b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3a+5b=0\\5a+3b=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\left(x-2010\right)+5\left(2009-x\right)=0\\5\left(x-2010\right)+3\left(2009-x\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-6030+10045-5x=0\\5x-10050+6027-3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-2x+4015=0\\2x-4023=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-2x=-4015\\2x=4023\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-4015}{-2}=2007,5\\x=\dfrac{4023}{2}=2011,5\end{matrix}\right.\)

Vậy \(\left[{}\begin{matrix}x=2007,5\\x=2011,5\end{matrix}\right.\)

Bình luận (0)
MS
28 tháng 12 2017 lúc 11:18

Đặt a=(2009-x)2

b=(x-2010)2

Theo đề bài ta có

\(\dfrac{\text{a^2+ab+b^2}}{a^2-ab+b^2}=\dfrac{19}{49}\)

\(\text{49(a^2+ab+b^2)}=19\left(a^2-ab+b^2\right)\)

\(\text{30a^2+68ab+30b^2=0}\)

\(\text{15a^2+34ab+15b^2=0}\)

\(\text{15a^2+9ab+25ab+15b^2=0}\)

\(\text{3a(5a+3b)+5(3b+5a)=0}\)

\(\text{(5a+3b)(3a+5b)=0}\)

\(\left[{}\begin{matrix}3a+5b=0\\3b+5a=0\end{matrix}\right.\)

\(\left[{}\begin{matrix}3\left(2009-x\right)=5\left(x-2010\right)\\5\left(2009-x\right)=3\left(x-2010\right)\end{matrix}\right.\)

\(-8x=-6030-10045\) hay \(8x=-10050-6027\)

\(x\simeq2009\),375 hay \(x\simeq2009,625\)

Bình luận (2)
H24
2 tháng 2 2018 lúc 22:57

Đặt {x−2010=a2009−x=b{x−2010=a2009−x=b

Theo đề bài ta có:

(2009−x)2+(2009−x)(x−2010)+(x−2010)2(2009−x)2−(2009−x)(x−2010)+(x−2010)2=1949(2009−x)2+(2009−x)(x−2010)+(x−2010)2(2009−x)2−(2009−x)(x−2010)+(x−2010)2=1949

⇔b2+ab+a2b2−ab+a2=1949⇔b2+ab+a2b2−ab+a2=1949

⇔19(b2−ab+a2)=49(b2+ab+a2)⇔19(b2−ab+a2)=49(b2+ab+a2)
⇔19b2−19ab+19a2−49b2−49ab−49a2=0⇔19b2−19ab+19a2−49b2−49ab−49a2=0

⇔−30a2−68ab−30b2=0⇔−30a2−68ab−30b2=0

⇔−2(15a2+34ab+15b2)=0⇔−2(15a2+34ab+15b2)=0

⇔15a2+34ab+15b2=0⇔15a2+34ab+15b2=0

⇔15a2+25ab+9ab+15b2=0⇔15a2+25ab+9ab+15b2=0

⇔5a(3a+5b)+3b(3a+5b)=0⇔5a(3a+5b)+3b(3a+5b)=0

⇔(3a+5b)(5a+3b)=0⇔(3a+5b)(5a+3b)=0

⇔[3a+5b=05a+3b=0⇔[3a+5b=05a+3b=0

⇔[3(x−2010)+5(2009−x)=05(x−2010)+3(2009−x)=0⇔[3(x−2010)+5(2009−x)=05(x−2010)+3(2009−x)=0

⇔[3x−6030+10045−5x=05x−10050+6027−3x=0⇔[3x−6030+10045−5x=05x−10050+6027−3x=0

⇔[−2x+4015=02x−4023=0⇔[−2x=−40152x=4023⇔[−2x+4015=02x−4023=0⇔[−2x=−40152x=4023

⇔⎡⎢ ⎢⎣x=−4015−2=2007,5x=40232=2011,5⇔[x=−4015−2=2007,5x=40232=2011,5

Vậy [x=2007,5x=2011,5

Bình luận (0)
H24
2 tháng 2 2018 lúc 22:57

Đặt a=(2009-x)2

b=(x-2010)2

Theo đề bài ta có

a^2+ab+b^2a2−ab+b2=1949a^2+ab+b^2a2−ab+b2=1949

49(a^2+ab+b^2)=19(a2−ab+b2)49(a^2+ab+b^2)=19(a2−ab+b2)

30a^2+68ab+30b^2=030a^2+68ab+30b^2=0

15a^2+34ab+15b^2=015a^2+34ab+15b^2=0

15a^2+9ab+25ab+15b^2=015a^2+9ab+25ab+15b^2=0

3a(5a+3b)+5(3b+5a)=03a(5a+3b)+5(3b+5a)=0

(5a+3b)(3a+5b)=0(5a+3b)(3a+5b)=0

[3a+5b=03b+5a=0[3a+5b=03b+5a=0

[3(2009−x)=5(x−2010)5(2009−x)=3(x−2010)[3(2009−x)=5(x−2010)5(2009−x)=3(x−2010)

−8x=−6030−10045−8x=−6030−10045 hay 8x=−10050−60278x=−10050−6027

x≃2009x≃2009,375 hay x≃2009,625

Bình luận (0)
GM
6 tháng 2 2018 lúc 20:44

Đặt a=2009−xa=2009−x, b=x−2010b=x−2010 ⇒a+b=−1⇒a+b=−1.

Ta có : 1949=a2+ab+b2a2−ab+b2=(a+b)2−ab(a+b)2−3ab=1−ab1−3ab1949=a2+ab+b2a2−ab+b2=(a+b)2−ab(a+b)2−3ab=1−ab1−3ab ⇒ab=−334⇒ab=−334.

Từ đó tính được aa hoặc bb, suy ra xx.

Bình luận (0)

Các câu hỏi tương tự
BS
Xem chi tiết
AA
Xem chi tiết
HT
Xem chi tiết
NC
Xem chi tiết
H24
Xem chi tiết
LV
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
QL
Xem chi tiết