Violympic toán 9

NN

Tìm x biết : \(1+\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+.....+\dfrac{2}{x\left(x+1\right)}=1\dfrac{2019}{2021}\)

LD
21 tháng 1 2019 lúc 18:38

\(1+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{2}{x\left(x+1\right)}=1\dfrac{2019}{2021}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{1\cdot2}{2}}+\dfrac{1}{\dfrac{2\cdot3}{2}}+\dfrac{1}{\dfrac{3\cdot4}{2}}+...+\dfrac{1}{\dfrac{x\left(x+1\right)}{2}}=\dfrac{4040}{2021}\)

\(\Leftrightarrow\dfrac{2}{1\cdot2}+\dfrac{2}{2\cdot3}+\dfrac{2}{3\cdot4}+...+\dfrac{2}{x\left(x+1\right)}=\dfrac{4040}{2021}\)

\(\Leftrightarrow2\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{4040}{2021}\)

\(\Leftrightarrow1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2020}{2021}\)

\(\Leftrightarrow1-\dfrac{1}{x+1}=\dfrac{2020}{2021}\)

\(\Leftrightarrow\dfrac{x}{x+1}=\dfrac{2020}{2021}\)

\(\Leftrightarrow2021x=2020x+2020\Leftrightarrow x=2020\)

Vậy S = {2020}

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
NS
Xem chi tiết
TL
Xem chi tiết
PA
Xem chi tiết
NT
Xem chi tiết
PG
Xem chi tiết
TD
Xem chi tiết
NT
Xem chi tiết
PA
Xem chi tiết