a)\(\sqrt{\dfrac{4x+3}{x+1}}=3< =>\dfrac{4x+3}{x+1}=3^2=9\)
\(=>4x+3=9\left(x+1\right)=9x+9\)
\(=>4x-9x=9-3< =>-5x=6\)
\(=>x=\dfrac{-6}{5}\)
b)\(\dfrac{1}{2}\sqrt{4x-8}-\dfrac{2}{3}\sqrt{x-2}+\sqrt{\dfrac{x-2}{36}}=7\)
\(< =>\dfrac{1}{2}\sqrt{2^2\left(x-2\right)}-\dfrac{2}{3}\sqrt{x-2}+\sqrt{\dfrac{x-2}{6^2}}=7\)
\(< =>\dfrac{1}{2}.2\sqrt{x-2}-\dfrac{2}{3}\sqrt{x-2}+\dfrac{1}{6}\sqrt{x-2}=7\)
\(< =>\left(1-\dfrac{2}{3}+\dfrac{1}{6}\right)\sqrt{x-2}=7\)
\(< =>\dfrac{1}{2}\sqrt{x-2}=7< =>\sqrt{x-2}=7:\dfrac{1}{2}=14\)
\(< =>x-2=14^2=196< =>x=196+2=198\)