Violympic toán 8

NC

Tìm x:

a) (5x -1)2 - (x2 -4x +4) =0

b) (4x-1).(x+3) = x2 -9

c) x3 -3x +2=0

LT
12 tháng 10 2020 lúc 5:06

Tìm x:

a) (5x - 1)2 - (x2 - 4x + 4) = 0

\(\Leftrightarrow\left(5x-1\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(5x-1-x+2\right)\left(5x-1+x-2\right)=0\)

\(\Leftrightarrow\left(4x+1\right)\left(6x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\6x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}4x=-1\\6x=3\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{1}{4}\\x=\frac{1}{2}\end{matrix}\right.\)

Vậy \(x=\left\{-\frac{1}{4};\frac{1}{2}\right\}\)

b) (4x - 1).(x + 3) = x2 - 9

\(\Leftrightarrow\left(4x-1\right)\left(x+3\right)-\left(x-3\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(4x-1-x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-\frac{2}{3}\end{matrix}\right.\)

Vậy \(x=\left\{-3;-\frac{2}{3}\right\}\)

c) x3 - 3x + 2 = 0

\(\Leftrightarrow x^3-x-2x+2=0\)

\(\Leftrightarrow x\left(x^2-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)-2\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-x+2x-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x-1\right)+2\left(x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

Vậy x ={1; -2}

Bình luận (0)

Các câu hỏi tương tự
NT
Xem chi tiết
Xem chi tiết
PP
Xem chi tiết
TD
Xem chi tiết
MT
Xem chi tiết
TN
Xem chi tiết
TT
Xem chi tiết
NC
Xem chi tiết
NC
Xem chi tiết