Ôn tập chương II

NA

tìm tất cả cá giá trị của tham số m sao cho (P): \(y=x^2-4x+m\) cắt trục Ox tại 2 điểm phân biệt A, B thỏa mãn OA = 3OB

NT
30 tháng 11 2023 lúc 23:08

Phương trình hoành độ giao điểm là:

\(x^2-4x+m=0\)

\(\text{Δ}=\left(-4\right)^2-4m=16-4m\)

Để (P) cắt Ox tại hai điểm phân biệt thì Δ>0

=>-4m+16>0

=>-4m>-16

=>m<4

(P) cắt trục Ox tại hai điểm A,B phân biệt nên \(A\left(x_A;0\right);B\left(x_B;0\right)\)

OA=3OB

=>\(OA^2=9OB^2\)

=>\(\left(x_A-0\right)^2+\left(y_A-0\right)^2=9\left[\left(x_B-0\right)^2+\left(y_B-0\right)^2\right]\)

=>\(\left(x_A\right)^2+\left(y_A\right)^2=9x_B^2+9y_B^2\)

=>\(x_A^2-9x_B^2=y_A^2-9y_B^2\)

=>\(x_A^2-9x_B^2=0\)

=>\(\left[{}\begin{matrix}x_A=3x_B\\x_A=-3x_B\end{matrix}\right.\)

Theo Vi-et, ta có:

\(x_A+x_B=4\) và \(x_A\cdot x_B=m\)

TH1: \(x_A=3x_B\)

\(x_A+x_B=4\)

=>\(3x_B+x_B=4\)

=>\(x_B=1\)

=>\(x_A=3\)

\(m=x_A\cdot x_B=1\cdot3=3\)

TH2: \(x_A=-3x_B\)

\(x_A+x_B=4\)

=>\(-3x_B+x_B=4\)

=>\(-2x_B=4\)

=>\(x_B=-2\)

\(x_A=-3\cdot x_B=-3\cdot\left(-2\right)=6\)

\(m=x_A\cdot x_B=6\cdot\left(-2\right)=-12\)

Bình luận (0)

Các câu hỏi tương tự
HD
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
LV
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NA
Xem chi tiết
NQ
Xem chi tiết
NA
Xem chi tiết