Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

NN

Tìm tập nghiệm của phương trình: \(\dfrac{\sqrt[]{3}sin^2x-2sinxcosx-\sqrt{3}cos^2x}{\left(2sinx+3\right)\left(4cos^2x-3\right)}=0\)

NL
7 tháng 8 2021 lúc 22:11

ĐKXĐ: \(cos2x\ne\dfrac{1}{2}\Leftrightarrow x\ne\pm\dfrac{\pi}{6}+k\pi\)

\(\sqrt{3}sin^2x-2sinx.cosx-\sqrt{3}cos^2x=0\)

\(\Leftrightarrow-sin2x-\sqrt{3}\left(cos^2x-sin^2x\right)=0\)

\(\Leftrightarrow sin2x+\sqrt{3}cos2x=0\)

\(\Leftrightarrow\dfrac{1}{2}sin2x+\dfrac{\sqrt{3}}{2}cos2x=0\)

\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=0\)

\(\Leftrightarrow2x+\dfrac{\pi}{3}=k\pi\)

\(\Leftrightarrow x=-\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)

Nghiệm này bao gồm 2 họ nghiệm: \(\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k\pi\\x=\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)

Do đó sau khi loại nghiệm theo ĐKXĐ ta được nghiệm của pt là: \(x=\dfrac{\pi}{3}+k\pi\)

Bình luận (0)

Các câu hỏi tương tự
DN
Xem chi tiết
DN
Xem chi tiết
HA
Xem chi tiết
NL
Xem chi tiết
LC
Xem chi tiết
MN
Xem chi tiết
PP
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết