Gọi số tự nhiên cần tìm là A
Chia cho 29 dư 5 nghĩa là: \(A=29p+5\)\(\left(p\in N\right)\)
Tương tự: \(A=31q+28\left(q\in N\right)\)
Nên: \(29p+5=31q+28\Rightarrow29\left(p-q\right)=2q+23\)
Ta thấy: \(2q+23\) là số lẻ \(\Rightarrow29\left(p-q\right)\) cũng là số lẻ\(\Rightarrow p-q=1\)
Theo giả thiết A nhỏ nhất => q nhỏ nhất\(\left(A=31q+28\right)\)
\(\Rightarrow2q=29\left(p-q\right)-23\) nhỏ nhất
=> p – q nhỏ nhất
Do đó p – q = 1 => 2q = 29 – 23 = 6
=> q = 3
Vậy số cần tìm là: A = 31q + 28 = 31. 3 + 28 = 121.
Giải:
Gọi số tự nhiên cần tìm là \(a\)
Ta có:
\(a\div29\) dư \(5\)
\(\Rightarrow a=29k+5\left(k\in N\right)\)
\(a\div31\) dư \(28\)
\(\Rightarrow a=31q+28\left(q\in N\right)\)
\(\Leftrightarrow29k+5=31q+28\Rightarrow29\left(k-q\right)=2q+23\)
Lại có:
\(2q+23\) là số lẻ \(\Rightarrow29\left(k-q\right)\) là số lẻ \(\Rightarrow k-q\ge1\)
Vì \(a\) nhỏ nhất \(\Rightarrow q\) cũng phải nhỏ nhất \(\left(a=31q+28\right)\)
\(\Rightarrow2q=29\left(k-q\right)-23\) nhỏ nhất
\(\Rightarrow k-q\) nhỏ nhất
Do đó: \(k-q=1\Rightarrow2q=29-23=6\Leftrightarrow q=3\)
\(\Rightarrow a=31q+28=31.3+28=121\)
Vậy số cần tìm là \(121\)