Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

H24

Tìm số các giá trị của tham số m để hàm sô \(y=\sqrt{2.sinx.sin3x+4m.sin2x-cos2x-m^2+1}\) xác định với mọi x

NL
9 tháng 1 2024 lúc 15:20

\(2sinx.sin3x+4m.sin2x-cos2x-m^2+1\ge0;\forall x\)

\(\Leftrightarrow-cos4x+4m.sin2x-m^2+1\ge0\)

\(\Leftrightarrow2sin^22x+4m.sin2x-m^2\ge0\)

\(\Leftrightarrow2t^2+4m.t-m^2\ge0\) ; \(\forall t\in\left[-1;1\right]\)

\(\Leftrightarrow\left(t+m\right)^2\ge\dfrac{3m^2}{2}\)

\(\Rightarrow\left[{}\begin{matrix}t+m\ge\sqrt{\dfrac{3m^2}{2}}\\t+m\le-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t\ge-m+\sqrt{\dfrac{3m^2}{2}}\\t\le-m-\sqrt{\dfrac{3m^2}{2}}\end{matrix}\right.\)

Điều này đúng với mọi \(t\in\left[-1;1\right]\) khi:

\(\left[{}\begin{matrix}-1\ge-m+\sqrt{\dfrac{3m^2}{2}}\left(1\right)\\1\le-m-\sqrt{\dfrac{3m^2}{2}}\left(2\right)\end{matrix}\right.\)

- Xét (1), nếu \(m\le0\Rightarrow-m\ge0\Rightarrow-m+\sqrt{\dfrac{3m^2}{2}}>0\) (ktm)

Với \(m>0\Rightarrow-1\ge-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\le-2-\sqrt{6}\)

- Xét (2), với \(m>0\Rightarrow-m-\sqrt{\dfrac{3m^2}{2}}< 0\) (ktm)

Với \(m< 0\Rightarrow1\le-m+m\sqrt{\dfrac{3}{2}}\Rightarrow m\ge2+\sqrt{6}\)

Vậy \(\left[{}\begin{matrix}m\le-2-\sqrt{6}\\m\ge2+\sqrt{6}\end{matrix}\right.\)

Cách tam thức có vẻ tốt hơn cách này

Bình luận (1)
NL
9 tháng 1 2024 lúc 18:21

Cách tam thức:

\(f\left(t\right)=2t^2+4mt-m^2\ge0;\forall t\in\left[-1;1\right]\)

Với \(m=0\) luôn thỏa mãn

Với \(m\ne0:\)

\(\Delta'=4m^2+2m^2=6m^2>0\)\(\forall m\ne0\)

\(\Rightarrow\) Bài toán thỏa mãn khi: \(\left[{}\begin{matrix}1\le t_1< t_2\\t_1< t_2\le-1\end{matrix}\right.\)

TH1: \(1\le t_1< t_2\Rightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\dfrac{t_1+t_2}{2}=-m>1\\\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-m^2+4m+2\ge0\\m< -1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

A, đến đây mới thấy cách làm hồi nãy quên hợp lại, xét TH \(m>0\) ra nghiệm \(m\le-2-\sqrt{6}\) mà quên luôn điều kiện m>0

TH2: \(t_1< t_2\le-1\Rightarrow\left\{{}\begin{matrix}f\left(-1\right)\ge0\\\dfrac{t_1+t_2}{2}=-m< -1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}-m^2-4m+2\ge0\\m>1\end{matrix}\right.\) \(\Rightarrow m\in\varnothing\)

Vậy \(m=0\) là giá trị duy nhất thỏa mãn

Phát hiện thêm 1 vấn đề nữa, \(A^2\ge B^2\Rightarrow\left[{}\begin{matrix}A\ge B\\A\le-B\end{matrix}\right.\) là sai, thực tế phức tạp và nhiều trường hợp hơn nhiều

Vậy thì chỉ có cách tam thức này là ổn thôi nếu ko cô lập được m. Kiểu bình phương kia sai mất căn bản.

Bình luận (0)

Các câu hỏi tương tự
GL
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
MA
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết