Ôn tập toán 8

LL

tìm phân nguyên của a với

A=\(\sqrt{2}+\sqrt[3]{\dfrac{3}{2}}+\sqrt[4]{\dfrac{4}{3}}+.......+\sqrt[n+1]{\dfrac{n+1}{n}}\)

SG
11 tháng 3 2017 lúc 17:11

Dạng tổng quát: \(\sqrt[k+1]{\frac{k+1}{k}}>\sqrt[k+1]{\frac{k+1}{k+1}}=1\) với k = 1; 2; 3; ...; n

=> \(a=\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+...+\sqrt[n+1]{\frac{n+1}{n}}>n\) (1)

Áp dụng bđt AM-GM cho k + 1 số dương ta có:

\(\sqrt[k+1]{\frac{k+1}{k}}=\sqrt[k+1]{1.1.1...1.\frac{k+1}{k}}< \frac{1+1+1+...+1+\frac{k+1}{k}}{k+1}=\frac{1.k}{k+1}+\frac{\frac{k+1}{k}}{k+1}\)

\(\Leftrightarrow\sqrt[k+1]{\frac{k+1}{k}}< \frac{k}{k+1}+\frac{1}{k}=1-\frac{1}{k+1}+\frac{1}{k}=1+\left(\frac{1}{k}-\frac{1}{k+1}\right)\)

\(< 1+\frac{1}{k\left(k+1\right)}\)

Áp dụng vào bài ta được:

\(a< \left(1+\frac{1}{1.2}\right)+\left(1+\frac{1}{2.3}\right)+\left(1+\frac{1}{3.4}\right)+...+\left(1+\frac{1}{n\left(n+1\right)}\right)\)

\(a< n+\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)\)

\(a< n+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\right)\)

\(a< n+\left(1-\frac{1}{n+1}\right)< n+1\) (2)

Từ (1) và (2) suy ra phần nguyên của a là n

Bình luận (0)

Các câu hỏi tương tự
AN
Xem chi tiết
LL
Xem chi tiết
DN
Xem chi tiết
TK
Xem chi tiết
NB
Xem chi tiết
ZH
Xem chi tiết
DN
Xem chi tiết
HG
Xem chi tiết
DN
Xem chi tiết