Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

MA

Tìm Min, Max:

\(y=2Sin^2x+3SinxCosx+Cos^2x\)

HP
29 tháng 8 2021 lúc 15:45

\(y=2sin^2x+3sinx.cosx+cos^2x\)

\(=-\left(1-2sin^2x\right)+\dfrac{3}{2}sin2x+\dfrac{1}{2}\left(2cos^2x-1\right)+\dfrac{1}{2}\)

\(=-cos2x+\dfrac{3}{2}sin2x+\dfrac{1}{2}cos2x+\dfrac{1}{2}\)

\(=\dfrac{3}{2}sin2x-\dfrac{1}{2}cos2x+\dfrac{1}{2}\)

\(=\dfrac{\sqrt{10}}{2}\left(\dfrac{3}{\sqrt{10}}sin2x-\dfrac{1}{\sqrt{10}}cos2x\right)+\dfrac{1}{2}\)

\(=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\)

Vì \(sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)\in\left[-1;1\right]\)

\(\Rightarrow y=\dfrac{\sqrt{10}}{2}sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)+\dfrac{1}{2}\in\left[-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2};\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\right]\)

\(\Rightarrow y_{min}=-\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=-1\Leftrightarrow...\)

\(y_{max}=\dfrac{\sqrt{10}}{2}+\dfrac{1}{2}\Leftrightarrow sin\left(2x-arccos\dfrac{3}{\sqrt{10}}\right)=1\Leftrightarrow...\)

Bình luận (0)

Các câu hỏi tương tự
HA
Xem chi tiết
TH
Xem chi tiết
KM
Xem chi tiết
CM
Xem chi tiết
PT
Xem chi tiết
LH
Xem chi tiết
TY
Xem chi tiết
NL
Xem chi tiết
NL
Xem chi tiết