Violympic toán 8

NL

tìm min của x^2-2xy+2y^2-4x+2y

VC
6 tháng 12 2017 lúc 22:08

x2 - 2xy + 2y2 - 4x + 2y

=x2 - 2(xy -y2 +x-y)

=x2-2[x(y-1)-y(y+1)]

=x2-2[(x-y)(y+1)]

mà x2>-1 => min của biểu thức là -2[(x-y)(y+1)]

Bình luận (0)
NN
6 tháng 12 2017 lúc 22:02

\(x^2-2xy+2y^2-4x+2y\)

\(=x^2-2xy+y^2+y^2-4x-2y+4y+1-1\)

\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)-\left(4x-4y\right)-1\)

\(=\left(x-y\right)^2-4\left(x-y\right)+\left(y-1\right)^2-1\)

\(=\left(x-y\right)^2-4\left(x-y\right)+4+\left(y-1\right)^2-5\)

\(=\left[\left(x-y\right)^2-2.\left(x-y\right).2+2^2\right]+\left(y-1\right)^2-5\)

\(=\left(x-y-2\right)^2+\left(y-1\right)^2-5\)

Vậy GTNN của đa thức trên bằng \(-5\) khi \(\left\{{}\begin{matrix}x-y-2=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1-2=0\\y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
LV
Xem chi tiết
LG
Xem chi tiết
H24
Xem chi tiết
LG
Xem chi tiết
HA
Xem chi tiết
TM
Xem chi tiết
DS
Xem chi tiết
LT
Xem chi tiết
AQ
Xem chi tiết