x2 - 2xy + 2y2 - 4x + 2y
=x2 - 2(xy -y2 +x-y)
=x2-2[x(y-1)-y(y+1)]
=x2-2[(x-y)(y+1)]
mà x2>-1 => min của biểu thức là -2[(x-y)(y+1)]
\(x^2-2xy+2y^2-4x+2y\)
\(=x^2-2xy+y^2+y^2-4x-2y+4y+1-1\)
\(=\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)-\left(4x-4y\right)-1\)
\(=\left(x-y\right)^2-4\left(x-y\right)+\left(y-1\right)^2-1\)
\(=\left(x-y\right)^2-4\left(x-y\right)+4+\left(y-1\right)^2-5\)
\(=\left[\left(x-y\right)^2-2.\left(x-y\right).2+2^2\right]+\left(y-1\right)^2-5\)
\(=\left(x-y-2\right)^2+\left(y-1\right)^2-5\)
Vậy GTNN của đa thức trên bằng \(-5\) khi \(\left\{{}\begin{matrix}x-y-2=0\\y-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x-1-2=0\\y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)