Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Violympic toán 8

H24

Tìm m nguyên dương để phương trình sau có nghiệm nguyên:

1: \(x^2-2mx+m^2+2m-7=0\)

2: \(\left(m-1\right)x^2+2\left(m+1\right)x+m+7=0\)

NL
22 tháng 8 2020 lúc 20:58

a/

Để pt có nghiệm: \(\Delta'=m^2-\left(m^2+2m-7\right)\ge0\)

\(\Leftrightarrow7-2m\ge0\Rightarrow m\le\frac{7}{2}\)

Để nghiệm là nguyên \(\Rightarrow7-2m\) là SCP lẻ (do 2m chẵn 7 lẻ nên luôn lẻ)

\(7-2m< 7\Rightarrow7-2m=1\Rightarrow m=3\)

b/ Với \(m=1\Rightarrow x=-2\) thỏa mãn

Với \(m\ne1\)

\(\Delta'=\left(m+1\right)^2-\left(m-1\right)\left(m+7\right)\ge0\)

\(\Leftrightarrow8-4m\ge0\Rightarrow m\le2\)

\(\Rightarrow m=2\) (còn mỗi số này nguyên dương)

Thế lại pt ban đầu để thử

Bình luận (0)

Các câu hỏi tương tự
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
HV
Xem chi tiết
BB
Xem chi tiết
DH
Xem chi tiết
PT
Xem chi tiết
H24
Xem chi tiết