Violympic toán 9

TV

tìm m để pt có 2 nghiệm x1, x2 thoả

\(x^2-\left(2-m\right)x+m+3=0;\dfrac{x_1}{x_2}+\dfrac{x_2}{x_1}=\dfrac{3}{2}\)

AH
4 tháng 7 2018 lúc 0:24

Lời giải:

Trước tiên để pt có 2 nghiệm $x_1,x_2$ thì:

\(\Delta=(2-m)^2-4(m+3)>0\)

\(\Leftrightarrow m^2-8m-8>0(*)\)

Áp dụng định lý Viete ta có: \(\left\{\begin{matrix} x_1+x_2=2-m\\ x_1x_2=m+3\end{matrix}\right.\)

ĐK \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\) trước tiên đòi hỏi $x_1,x_2\neq 0$ hay \(m+3\neq 0\Rightarrow m\neq -3\)

Khi đó: \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{3}{2}\)

\(\Leftrightarrow \frac{x_1^2+x_2^2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(x_1+x_2)^2-2x_1x_2}{x_1x_2}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2-2(m+3)}{m+3}=\frac{3}{2}\)

\(\Leftrightarrow \frac{(2-m)^2}{m+3}=\frac{7}{2}\Rightarrow 2(2-m)^2=7(m+3)\)

\(\Rightarrow 2m^2-15m-13=0\)

\(\Rightarrow m=\frac{15\pm \sqrt{329}}{4}\). Kết hợp với đk $(*)$ ta thấy không tồn tại $m$ thỏa mãn

Bình luận (0)

Các câu hỏi tương tự
NS
Xem chi tiết
MK
Xem chi tiết
NL
Xem chi tiết
AP
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết
BB
Xem chi tiết
BB
Xem chi tiết
BA
Xem chi tiết