Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
cho hệ phương trình x+my=m+1 mx+y=3m-1
tìm m để hệ phương trình có một nghiệm duy nhất (x,y)thõa mãn xy đại giá trị nhỏ nhất
1. Tìm m để hệ có đúng 3 nghiệm \(\left\{{}\begin{matrix}xy\left(x-2\right)\left(y-6\right)=m\\x^2+y^2-2\left(x+3y\right)=3m\end{matrix}\right.\)
2. Tìm m để phương trình có duy nhất nghiệm thỏa mãn \(x\le3\):
\(x^2-\left(m+3\right)x+2m-1=0\)
Cho phương trình : \(x^2+\left(3m+2\right)x+3m=0\).
Tìm m để phương trình có hai nghiệm phân biệt \(x_1,x_2\) sao cho biểu thức \(Q=\left(x_1+1\right)^4+\left(x_2+1\right)^4\) đạt giá trị nhỏ nhất .
Tìm m để phương trình \(x^2-2x+2\left(x-\sqrt{2x+m}\right)\left(\sqrt{x}+1\right)-m=0\) có nghiệm duy nhất trên đoạn [0;3].
(chỉ cần gợi ý cách biến đổi ra pt bậc 2 là đc)
Tìm m để hệ phương trình sau có nghiệm:
\(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}=1\\x\sqrt{x}+y\sqrt{y}=1-3m\end{matrix}\right.\)
tìm m để các phương trình sau có nghiệm , vô nghiệm :
a) (m-5)x2 -4mx + m-2 = 0
b) (3-m)x2 -2(m+3)x + m + 2 =0
c) (-m2+2m-3)x2 + 2(2-3m)x - 3 =0
tìm m để phương trình \(x^{2+}2\left(m-1\right)x+3m-2=0\) có 2 nghiệm trái dấu x1, x2 thỏa mãn \(\dfrac{1}{x_1}-3=\left|\dfrac{1}{x_2}\right|\)
Cho 2 phương trình ẩn x : \(x^2+\left(m-3\right)x-2m^2+3m=0\).Tìm m để phương trình đã cho có hai nghiệm phân biệt x\(_1\) ;x\(_2\) thỏa mãn \(\dfrac{x_1.x_2}{x_1+x_3}\)=\(-\dfrac{m^2}{2}\)
tìm m để các phương trình sau có nghiệm duy nhất
1, \(mx^2+6=4x+3m\)
2,\(mx^2-2\left(m+1\right)x+m+1=0\)
3, \(2\left(x^2-1\right)=x\left(mx+1\right)\)