Violympic toán 9

DA

tìm m để phương trình \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\) có 4 nghiệm phân biệt \(x_1,x_2,x_3,x_4\) thỏa mãn \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

VH
25 tháng 3 2020 lúc 21:20

Phương trình tương đương:

\(\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(a+3\right)\left(a-5\right)-m=0\)

\(\Leftrightarrow a^2-2a-15-m=0\) (1) với \(a=x^2+4x\)

Để phương trình ẩn x có 4 nghiệm phân biệt thì điều kiện cần của phương trình ẩn a là phải có 2 nghiệm phân biệt.

\(\Delta'_{\left(1\right)}=1+15+m=16+m>0\) \(\Rightarrow m>-16\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2+\sqrt{16+m}\\a=2-\sqrt{16+m}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2+4x-2-\sqrt{16+m}=0\left(2\right)\\x^2+4x-2+\sqrt{16+m}=0\left(3\right)\end{matrix}\right.\)

Dễ thấy (2) luôn có 2 nghiệm phân biệt với mọi m, (3) có 2 nghiệm phân biệt khi \(m< 0\). (Xét denta)

Nghiệm của chúng lần lượt là:

\(\left[{}\begin{matrix}x=2+\sqrt{4+\sqrt{16+m}}\\x=2-\sqrt{4+\sqrt{16+m}}\\x=2+\sqrt{4-\sqrt{16+m}}\\x=2-\sqrt{4-\sqrt{16+m}}\end{matrix}\right.\). 4 nghiệm này luôn phân biệt với \(-16< m< 0\)

Lần lượt thay nghiệm vào điều kiện:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

Ta được phương trình vô nghiệm. Vậy không tìm nổi m :V

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
DA
Xem chi tiết
ND
Xem chi tiết
PQ
Xem chi tiết
H24
Xem chi tiết
HO
Xem chi tiết
PQ
Xem chi tiết
BB
Xem chi tiết
NH
Xem chi tiết
NL
Xem chi tiết