Bài 2: Cực trị hàm số

VN

Tìm m để hàm số \(y=x^4-2m^2x^2+1\) có 3 điểm cực trị là 3 đỉnh của một tam giác vuông cân

VK
23 tháng 4 2016 lúc 14:08

Hàm số xác định trên R

Ta có \(y'=4x^3-4m^2x=4x\left(x^2-m^2\right)\)

Suy ra hàm số có 3 cực trị \(\Leftrightarrow m\ne0\)

Khi đó tọa độ các điểm cực trị của đồ thị hàm số là \(A\left(0;1\right);B\left(m;1-m^4\right);C\left(-m;1-m^4\right)\)

Ta thấy AB = AC nên tam giác ABC vuông cân \(\Leftrightarrow AB^2+AC^2=BC^2\)

                                                                     \(\Leftrightarrow2\left(m^2+m^8\right)=4m^2\Rightarrow m=\pm1\)

Vậy \(m=\pm1\) là giá trị cần tìm

Bình luận (0)

Các câu hỏi tương tự
TN
Xem chi tiết
NA
Xem chi tiết
PH
Xem chi tiết
NH
Xem chi tiết
PK
Xem chi tiết
NN
Xem chi tiết
NN
Xem chi tiết
LB
Xem chi tiết
MT
Xem chi tiết