A, B la cac diem cuc tri cua ham so (C) y = \(2x^3\) - \(3x^2\) +5. Tim M\(\in\) x+3y+7 =0 sao cho P= \(\overrightarrow{MO}\times\overrightarrow{MA}+\overrightarrow{MA}\times\overrightarrow{MB}+\overrightarrow{MB}\times\overrightarrow{MO}\) dat min
tim tat ca cac gia tri cua m de hs y= x^4 +2mx^2 +m^2 co ba diem cuc nho hon 3
Tìm m để hàm số \(y=\frac{1}{3}x^3-mx^2+\left(m^2+m-1\right)x+1\) đạt cực trị tại 2 điểm x1,x2 thõa mãn : \(\left|x_1+x_2\right|=4\)
Cho hàm số \(y=f\left(x\right)\) có đạo hàm \(f'\left(x\right)=\left(x-2\right)^2\left(x-1\right)\left(x^2-2\left(m+1\right)x+m^2-1\right)\) , \(\forall x\in R\) . Có bao nhiêu giá trị nguyên của m để hàm số \(g\left(x\right)=f\left(\left|x\right|\right)\) có 5 điểm cực trị ?
Cho hàm số \(y=\frac{1}{3}x^3+\left(m^2-m+2\right)x^2+\left(3m^2+1\right)x+m-5\) (1)
Xác định m để hàm số (1) đạt cực tiểu \(x=-2\)
tìm m để y=\(\dfrac{1}{3}x^3+\left(m^2-1\right)x^2+\left(2m-3\right)x+2\) đạt cực đại tại x=2
b) tìm m để y=\(\dfrac{1}{3}x^3+mx^2+3x+1\) đạt cực đại tại x=-3
Cho hàm số : \(y=x^3-3\left(m+1\right)x^2+9x+m-2\left(1\right)\) có đồ thị là Cm. Xác định m để Cm có cực đại và cực tiểu đối xứng với nhau qua đường thẳng \(y=\frac{1}{2}x\)
Chứng minh với mọi m hàm số \(y=\frac{x^2-m\left(m+1\right)x+m^3+1}{x-m}\) luôn có cực đại và cực tiểu
Tìm m để hàm số \(f\left(x\right)=x^3-3x^2+m^2x+m\) có cực đại và cực tiểu đối xứng nhau qua \(\left(\Delta\right):y=\frac{1}{2}x-\frac{5}{2}\)