Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

H24

Tìm m để hàm số \(\sqrt{sin^4x+cos^4x+4.sinx.cosx+m-5}\) xác định trên R

NL
8 tháng 1 2024 lúc 21:37

Hàm xác định trên R khi và chỉ khi:

\(sin^4x+cos^4x+4sinx.cosx+m-5\ge0;\forall m\)

\(\Leftrightarrow sin^4x+cos^4x+4sinx.cosx-5\ge-m;\forall m\)

\(\Leftrightarrow-m\le\min\limits_{x\in R}f\left(x\right)\)

Với \(f\left(x\right)=sin^4x+cos^4x+4sinx.cosx-5\)

Ta có:

\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x+4sinx.cosx-5\)

\(=-\dfrac{1}{2}\left(2sinx.cosx\right)^2+2sin2x-4\)

\(=-\dfrac{1}{2}sin^22x+2sin2x-4\)

\(=\dfrac{1}{2}\left(-sin^22x+4sin2x+5\right)-\dfrac{13}{2}\)

\(=\dfrac{1}{2}\left(5-sin2x\right)\left(sin2x+1\right)-\dfrac{13}{2}\ge-\dfrac{13}{2}\) do \(-1\le sin2x\le1\)

\(\Rightarrow\min\limits_{x\in R}f\left(x\right)=-\dfrac{13}{2}\Rightarrow m\ge\dfrac{13}{2}\)

Bình luận (2)

Các câu hỏi tương tự
H24
Xem chi tiết
GL
Xem chi tiết
BB
Xem chi tiết
H24
Xem chi tiết
DH
Xem chi tiết
KT
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết