Bài 2: Giới hạn của hàm số

H24

Tìm \(\lim\limits_{x\rightarrow1}\dfrac{\left(2-x\right)+\left(2-x\right)^2+\left(2-x\right)^3+...+\left(2-x\right)^9-9}{x+x^2+...+x^{10}-10}\)

HH
7 tháng 3 2021 lúc 13:49

Mình xin trình bày 2 cách, một là phân tích bình thường, 2 là xài L'Hospital. Bởi c3 ko ai cho xài L'Hospital để hack tự luận cả

C1: Normal

\(\left(2-x\right)+\left(2-x\right)^2+...+\left(2-x\right)^9-9\)

\(=\left[\left(2-x\right)-1\right]+\left[\left(2-x\right)^2-1\right]+...+\left[\left(2-x\right)^9-1\right]\)

\(=\left(2-x-1\right)+\left(2-x-1\right)\left(2-x+1\right)+\left(2-x-1\right)\left[\left(2-x\right)^2+\left(2-x\right)+1\right]+...+\left(2-x-1\right)\left[\left(2-x\right)^8+\left(2-x\right)^7+...+1\right]\)

\(=-\left(x-1\right)\left(1+2-x+1+\left(2-x\right)^2+\left(2-x\right)+1+....+\left(2-x\right)^8+\left(2-x\right)^7+...+1\right)\)

Lai co:

\(x+x^2+...+x^{10}-10=\left(x-1\right)+\left(x^2-1\right)+...+\left(x^{10}-1\right)\)

\(=\left(x-1\right)+\left(x-1\right)\left(x+1\right)+....+\left(x-1\right)\left(x^9+x^8+...+1\right)\)

\(=\left(x-1\right)\left[1+x+1+x^2+x+1+....+x^9+x^8+...+1\right]\)

\(\Rightarrow\lim\limits_{x\rightarrow1}....=\lim\limits_{x\rightarrow1}\dfrac{-[1+2-x+1+\left(2-x\right)^2+\left(2-x\right)+1+...+\left(2-x\right)^8+\left(2-x\right)^7+...+1]}{1+x+1+x^2+x+1+...+x^9+x^8+...+1}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{-[9.1+8.\left(2-x\right)+7\left(2-x\right)^2+6\left(2-x\right)^3+5\left(2-x\right)^4+4\left(2-x\right)^5+3\left(2-x\right)^6+2\left(2-x\right)^7+\left(2-x\right)^8]}{10.1+9x^2+8x^3+7x^4+6x^5+5x^6+4x^7+3x^8+2x^9+x^{10}}\)

\(=\dfrac{-[1+2+3+...+9]}{1+2+3+...+10}=\dfrac{-45}{55}\)

Bình luận (0)
HH
7 tháng 3 2021 lúc 13:52

C2: L'Hospital

\(=\lim\limits_{x\rightarrow1}\dfrac{-1-2\left(2-x\right)-3\left(2-x\right)^2-...-9\left(2-x\right)^8}{1+2x+3x^2+...+10x^9}\)

\(=\lim\limits_{x\rightarrow1}\dfrac{-1-2-3-...-9}{1+2+3+...+10}=-\dfrac{45}{55}\)

Bình luận (0)
H24
7 tháng 3 2021 lúc 10:48

https://www.mathvn.com/2020/07/qui-tac-lhopital-va-ung-dung-trong-tinh.html

Tìm hiểu thêm về quy tắc này nhá

Bình luận (0)

Các câu hỏi tương tự
TT
Xem chi tiết
DD
Xem chi tiết
AN
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
DD
Xem chi tiết
NT
Xem chi tiết