Bài 4. Phép nhân và phép chia hết hai số nguyên

QL

Tìm hai số nguyên khác nhau a và b thỏa mãn \(a \vdots b\) và \(b \vdots a\).

HM
10 tháng 10 2023 lúc 9:42

\(a \vdots b\) nếu có \({q_1} \ne 1\) để \(a = b.{q_1}\)

\(b \vdots a\) nếu có \({q_2} \ne 1\) để \(b = a.{q_2}\).

Suy ra \(a = b.{q_1} = \left( {a.{q_2}} \right).{q_1}\)\( = a.{q_1}.{q_2} = a.\left( {{q_1}.{q_2}} \right)\)\( \Rightarrow {q_1}.{q_2} = 1\)

Mà \({q_1} \ne 1\) và \({q_2} \ne 1\) nên \({q_1} = {q_2} =  - 1\) vì chỉ có \(\left( { - 1} \right).\left( { - 1} \right) = 1\)

Vậy \(a =  - b\) và \(b =  - a\). Hay a và b là hai số đối nhau và khác nhau.

Các số nguyên cần tìm là các số nguyên khác 0 vì chỉ có số 0 có số đối bằng chính nó.

Bình luận (0)

Các câu hỏi tương tự
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết
QL
Xem chi tiết