Phép nhân và phép chia các đa thức

DA

Tim gtri nho nhat cua

A= x^2 - 5x + 12

B= 2x^2 -14x + 5

TL
23 tháng 10 2017 lúc 11:11

\(A=x^2-5x+12\\ A=x^2-5x+\dfrac{25}{4}+\dfrac{23}{4}\\ A=\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{23}{4}\\ A=\left[x^2-2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{23}{4}\\ A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\\ Do\text{ }\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{5}{2}=0\\ \Leftrightarrow x=\dfrac{5}{2}\\ \text{Vậy }A_{\left(Min\right)}=\dfrac{23}{4}\text{ }khi\text{ }x=\dfrac{5}{2}\)

\(B=2x^2-14x+5\\ \\ A=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ A=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ A=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ A=\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ Do\text{ }\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\\ \text{Vậy }B_{\left(Min\right)}=-\dfrac{39}{2}\text{ }khi\text{ }x=\dfrac{7}{2}\)

Bình luận (0)
TL
23 tháng 10 2017 lúc 11:18

\(B=2x^2-14x+5\\ B=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ B=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ B=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ B=2\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ \)

Do \(\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)

\(\Rightarrow B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\)

Dấu \("="\) xảy ra khi :

\(\left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\)

Vậy \(B_{\left(Min\right)}=-\dfrac{39}{2}\) khi \(x=\dfrac{7}{2}\)

Do máy bị lỗi nên câu B bị trục trặc.

Mk xin lỗi.

Bình luận (1)

Các câu hỏi tương tự
HN
Xem chi tiết
HN
Xem chi tiết
NN
Xem chi tiết
BC
Xem chi tiết
PT
Xem chi tiết
LC
Xem chi tiết
NT
Xem chi tiết
LT
Xem chi tiết
HL
Xem chi tiết