\(P=\frac{x^2+y^2+3}{x^2+y^2+2}\)
\(P=\frac{x^2+y^2+2+1}{x^2+y^2+2}\)
\(P=1+\frac{1}{x^2+y^2+2}\)
Để P max thì \(\frac{1}{x^2+y^2+2}\) max
Mà \(\frac{1}{x^2+y^2+2}>0\forall x;y\)
Do đó \(\frac{1}{x^2+y^2+2}\) max \(\Leftrightarrow x^2+y^2+2\) min
Mặt khác : \(x^2+y^2+2\ge2\forall x;y\)
Ta có : \(P\ge1+\frac{1}{2}=\frac{3}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=0\)