\(A=\frac{-4x^2-2+4x^2+4x+1}{2x^2+1}=\frac{-2\left(2x^2+1\right)}{2x^2+1}+\frac{4x^2+4x+1}{2x^2+1}\)
\(A=-2+\frac{\left(2x+1\right)^2}{2x^2+1}\)
Do \(\frac{\left(2x+1\right)^2}{2x^2+1}\ge0\) \(\forall x\Rightarrow A\ge-2\) \(\forall x\)
\(\Rightarrow A_{min}=-2\) khi \(x=-\frac{1}{2}\)