Ôn tập cuối năm phần số học

HH

Tìm GTLN, GTNH của biểu thức A=\(\frac{3+8x}{4x^2+1}\)

Y
12 tháng 5 2019 lúc 21:08

\(A=\frac{\left(4x^2+8x+4\right)-\left(4x^2+1\right)}{4x^2+1}\)

\(A=\frac{\left(2x+2\right)^2}{4x^2+1}-1\ge-1\forall x\)

( do \(\frac{\left(2x+2\right)^2}{4x^2+1}\ge0\forall x\) )

A = -1 \(\Leftrightarrow\left(2x+2\right)^2=0\Leftrightarrow x=-1\)

Vậy Min A = -1 <=> x = -1

+ \(A=\frac{4\left(4x^2+1\right)-\left(16x^2-8x+1\right)}{4x^2+1}\)

\(\Rightarrow A=4-\frac{\left(4x-1\right)^2}{4x^2+1}\le4\forall x\)

( do \(-\frac{\left(4x-1\right)^2}{4x^2+1}\le0\forall x\) )

A = 4 \(\Leftrightarrow\left(4x-1\right)^2=0\Leftrightarrow x=\frac{1}{4}\)

Vậy Max A = 4 <=> x = 1/4

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
HL
Xem chi tiết
HH
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết
TV
Xem chi tiết
NC
Xem chi tiết
DT
Xem chi tiết
MC
Xem chi tiết