\(A=-x+5\sqrt{x}\)
\(=-x+5\sqrt{x}-\dfrac{25}{4}+\dfrac{25}{4}\)
\(=-\left(x-5\sqrt{x}+\dfrac{25}{4}-\dfrac{25}{4}\right)\)
\(=-\left[\left(x-5\sqrt{x}+\dfrac{25}{4}\right)-\dfrac{25}{4}\right]\)
\(=-\left[\left(\sqrt{x}-\dfrac{5}{2}\right)^2-\dfrac{25}{4}\right]\le\dfrac{25}{4}\)
Vậy \(\)\(MAX_A=\dfrac{25}{4}\) khi \(\left(\sqrt{x}-\dfrac{5}{2}\right)^2=0\Leftrightarrow x=\dfrac{25}{4}\)