Phép nhân và phép chia các đa thức

VQ

tìm GTLN của biểu thức

a) A= 5x-x2

b) B=x-x2

c) C=4x-x2+3

em mong mọi người giúp đỡ

NT
9 tháng 12 2019 lúc 22:46

a) Ta có: \(A=5x-x^2\)

\(=-\left(x^2-5x+\frac{25}{4}-\frac{25}{4}\right)\)

\(=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)

Ta có: \(\left(x-\frac{5}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-\frac{5}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{5}{2}\right)^2=0\Leftrightarrow x-\frac{5}{2}=0\)\(\Leftrightarrow x=\frac{5}{2}\)

Vậy: GTLN của biểu thức \(A=5x-x^2\)\(\frac{25}{4}\) khi \(x=\frac{5}{2}\)

b) Ta có: \(B=x-x^2\)

\(=-\left(x^2-x+\frac{1}{4}-\frac{1}{4}\right)\)

\(=-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)

Dấu '=' xảy ra khi

\(\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x-\frac{1}{2}=0\)\(\Leftrightarrow x=\frac{1}{2}\)

Vậy: GTLN của biểu thức \(B=x-x^2\)\(\frac{1}{4}\) khi \(x=\frac{1}{2}\)

c) Ta có: \(C=4x-x^2+3\)

\(=-\left(x^2-4x-3\right)\)

\(=-\left(x^2-4x+4-7\right)=-\left(x-2\right)^2+7\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-2\right)^2+7\le7\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị lớn nhất của biểu thức \(C=4x-x^2+3\) là 7 khi x=2

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
VQ
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết
LH
Xem chi tiết
NA
Xem chi tiết
VQ
Xem chi tiết
VQ
Xem chi tiết
PT
Xem chi tiết
PT
Xem chi tiết