Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Ôn tập cuối năm phần số học

TF

Tìm giá trị nhỏ nhất của biểu thức \(P=4x^4-3x^2+\frac{1}{4x^2}+2017\)

AH
30 tháng 5 2020 lúc 12:40

Lời giải:

Áp dụng BĐT AM-GM ta có:

\(4x^4+1\geq 4x^2\)

\(x^2+\frac{1}{4x^2}\geq 1\)

Cộng 2 BĐT trên theo vế và thu gọn ta có:

\(4x^4-3x^2+\frac{1}{4x^2}\geq 0\)

\(\Rightarrow P=4x^4-3x^2+\frac{1}{4x^2}+2017\geq 2017\)

Vậy $P_{\min}=2017$. Giá trị này đạt được khi $x=\pm \frac{1}{\sqrt{2}}$

Bình luận (0)

Các câu hỏi tương tự
DT
Xem chi tiết
DT
Xem chi tiết
TV
Xem chi tiết
DT
Xem chi tiết
HT
Xem chi tiết
DT
Xem chi tiết
DP
Xem chi tiết
DT
Xem chi tiết
MC
Xem chi tiết