ĐKXĐ : \(\left\{{}\begin{matrix}x-2\ge0\\4-x\ge0\end{matrix}\right.\) => \(\left\{{}\begin{matrix}x\ge2\\x\le4\end{matrix}\right.\)
=> \(2\le x\le4\)
Ta có : \(A=\sqrt{x-2}+\sqrt{4-x}\)
Ta thấy : \(1\sqrt{x-2}+1\sqrt{4-x}\le\sqrt{\left(1^2+1^2\right)\left(\left(\sqrt{x-2}\right)^2+\left(\sqrt{4-x}\right)^2\right)}\)
=> \(A\le\sqrt{2\left(x-2+4-x\right)}=\sqrt{2.2}=\sqrt{4}=2\)
Vậy MaxA = 2 <=> \(\frac{1}{\sqrt{x-2}}=\frac{1}{\sqrt{4-x}}\)
<=> \(x-2=4-x\)
<=> \(2x=6\)
<=> \(x=3\left(TM\right)\)
Bài giải
ĐKXĐ :
\(A\le\sqrt{2\left(x-2+4-x\right)}=\sqrt{4}=2\)
\(A_{max}=2\) khi \(x-2=4-x\) \(\Rightarrow\) \(2x=6\) \(\Rightarrow\) \(x=3\)
Vậy \(A_{max}=2\) khi \(x=3\)