\(\dfrac{x-1}{4}=\dfrac{-9}{1-x}\) (ĐKXĐ:\(x\ne1\))
\(\Leftrightarrow\left(x-1\right)\left(1-x\right)=\left(-9\right).4\)
\(\Leftrightarrow x-x^2-1+x=-36\)
\(\Leftrightarrow-x+x^2+1-x-36=0\)
\(\Leftrightarrow x^2-2x-35=0\)
\(\Leftrightarrow x^2+5x-7x-35=0\)
\(\Leftrightarrow\left(x^2+5x\right)-\left(7x+35\right)=0\)
\(\Leftrightarrow x\left(x+5\right)-7\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\x-7=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=7\end{matrix}\right.\)(TMĐK)
Vậy với x=-5 hoặc x=7 thì biểu thức trên thỏa mãn
`(x-1)/4=(-9)/(1-x)`
`(x-1)(1-x)=-9.4`
`(x-1)(x-1)=36`
`(x-1)(x-1)=6.6=(-6).(-6)`
`[(x-1=6),(x-1=-6):}`
`[(x=7),(x=-5):}`
Ta có: \(\dfrac{x-1}{4}=\dfrac{-9}{1-x}\)
\(\Leftrightarrow\left(x-1\right)^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)